Contributions to collective works (3)

  1. 1. Vanhuysse, S., Wolff, E., Kuffer, M., Georganos, S., Wang, J., Grippa, T., & Abascal, A. (2024). Putting the Invisible on the Map: Low-Cost Earth Observation for Mapping and Characterizing Deprived Urban Areas (Slums). In Urban Inequalities from Space: Earth Observation Applications in the Majority World (pp. 119-137). Springer. doi:10.1007/978-3-031-49183-2_7
  2. 2. Abascal, A., Georganos, S., Kuffer, M. M., Vanhuysse, S., Thomson, D., Wang, J., Manyasi, L., Otunga, D. M., Ochieng, B., Ochieng, T., Klinnert, J., & Wolff, E. (2024). Making Urban Slum Population Visible: Citizens and Satellites to Reinforce Slum Censuses. In Urban Inequalities from Space: Earth Observation Applications in the Majority World (pp. 287-302). Springer International Publishing. doi:10.1007/978-3-031-49183-2_14
  3. 3. Kuffer, M. M., Abascal, A., Vanhuysse, S., Georganos, S., Wang, J., Thomson, D. R., Boanada, A., & Roca, P. (2023). Data and Urban Poverty: Detecting and Characterising Slums and Deprived Urban Areas in Low- and Middle-Income Countries. In Advanced Remote Sensing for Urban and Landscape Ecology (pp. 1-22). Springer Nature Singapore. doi:10.1007/978-981-99-3006-7_1
  4.   Peer-reviewed journal articles (38)

  5. 1. Sampson, S. A., Abascal, A., Wang, J., Vanhuysse, S., Rodriguez-Carreño, I., Garcia Ruiz, I., & Kuffer, M. (2025). Using Low-Cost Sensors and Citizen Science: Assessing Thermal Inequality in African Slums. The international archives of the photogrammetry, remote sensing and spatial information sciences, XLVIII-M-7-2025, 229-236. doi:10.5194/isprs-archives-XLVIII-M-7-2025-229-2025
  6. 2. Abascal, A., Vanhuysse, S., Grippa, T., Rodriguez-Carreño, I., Georganos, S., Wang, J., Kuffer, M. M., Martinez-Diez, P., Santamaria-Varas, M., & Wolff, E. (2024). AI perceives like a local: predicting citizen deprivation perception using satellite imagery. npj urban sustainability, 4(1). doi:10.1038/s42949-024-00156-x
  7. 3. Demissie, B., Vanhuysse, S., Grippa, T., Flasse, C., & Wolff, E. (2023). Using Sentinel-1 and Google Earth Engine cloud computing for detecting historical flood hazards in tropical urban regions: a case of Dar es Salaam. Geomatics, Natural Hazards and Risk, 14(1). doi:10.1080/19475705.2023.2202296
  8. 4. Vanhuysse, S., Diédhiou, S. M., Grippa, T., Georganos, S., Konaté, L., Niang, E. H. A., & Wolff, E. (2023). Fine-scale mapping of urban malaria exposure under data scarcity: an approach centred on vector ecology. Malaria journal, 22(1). doi:10.1186/s12936-023-04527-0
  9. 5. Kabiru, P., Kuffer, M. M., Sliuzas, R., & Vanhuysse, S. (2023). The relationship between multiple hazards and deprivation using open geospatial data and machine learning. Natural hazards. doi:10.1007/s11069-023-05897-z
  10. 6. Wang, J., Georganos, S., Kuffer, M. M., Abascal, A., & Vanhuysse, S. (2022). On the knowledge gain of urban morphology from space. Computers, environment and urban systems, 95, 101831. doi:10.1016/j.compenvurbsys.2022.101831
  11. 7. Abascal, A., Rodríguez-Carreño, I., Vanhuysse, S., Georganos, S., Sliuzas, R., Wolff, E., & Kuffer, M. M. (2022). Identifying degrees of deprivation from space using deep learning and morphological spatial analysis of deprived urban areas. Computers, environment and urban systems, 95, 101820. doi:10.1016/j.compenvurbsys.2022.101820
  12. 8. Georganos, S., Abascal, A., Kuffer, M. M., Wang, J., Owusu, M., Wolff, E., & Vanhuysse, S. (2021). Is it all the same? Mapping and characterizing deprived urban areas using worldview-3 superspectral imagery. a case study in nairobi, kenya. Remote Sensing, 13(24), 4986. doi:10.3390/rs13244986
  13. 9. Merodio Gómez, P., Juarez Carrillo, O. J., Kuffer, M. M., Thomson, D., Olarte Quiroz, J. L., Villaseñor García, E., Vanhuysse, S., Abascal, A., Oluoch, I., Nagenborg, M., Persello, C., & Brito, P. L. (2021). Earth Observations and Statistics: Unlocking Sociodemographic Knowledge through the Power of Satellite Images. Sustainability, 13(22), 12640. doi:10.3390/su132212640
  14. 10. Kuffer, M. M., Wang, J., Thomson, D. R., Georganos, S., Abascal, A., Owusu, M., & Vanhuysse, S. (2021). Spatial Information Gaps on Deprived Urban Areas (Slums) in Low-and-Middle-Income-Countries: A User-Centered Approach. Urban Science, 5(4), 72. doi:10.3390/urbansci5040072
  15. 11. Mboga, N. O., D’Aronco, S., Grippa, T., Pelletier, C., Georganos, S., Vanhuysse, S., Wolff, E., Smets, B., Dewitte, O., Lennert, M., & Wegner, J. D. (2021). Domain Adaptation for Semantic Segmentation of Historical Panchromatic Orthomosaics in Central Africa. ISPRS International Journal of Geo-Information, 10(8), 523. doi:10.3390/ijgi10080523
  16. 12. Owusu, M., Kuffer, M. M., Belgiu, M., Grippa, T., Lennert, M., Georganos, S., & Vanhuysse, S. (2021). Towards user-driven earth observation-based slum mapping. Computers, environment and urban systems, 89, 101681. doi:10.1016/j.compenvurbsys.2021.101681
  17. 13. Georganos, S., Grippa, T., Niang Gadiaga, A., Linard, C., Lennert, M., Vanhuysse, S., Mboga, N. O., Wolff, E., & Kalogirou, S. (2021). Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling. Geocarto international, 36(2), 121-136. doi:doi.org/10.1080/101106049.2019.1595177
  18. 14. Kuffer, M. M., Vanhuysse, S., Georganos, S., & Wang, J. (2021). Meeting user requirements for mapping and characterizing deprived urban areas in support of pro-poor policies. GI_Forum, 9(1), 85-93. doi:10.1553/GISCIENCE2021_01_S85
  19. 15. Mboga, N. O., Grippa, T., Georganos, S., Vanhuysse, S., Smets, B., Dewitte, O., Wolff, E., & Lennert, M. (2020). Fully convolutional networks for land cover classification from historical panchromatic aerial photographs. ISPRS journal of photogrammetry and remote sensing, 167, 385-395. doi:10.1016/j.isprsjprs.2020.07.005
  20. 16. Georganos, S., Brousse, O., Dujardin, S., Linard, C., Casey, D., Milliones, M., Parmentier, B., Van Lipzig, N. P. M., Demuzere, M., Grippa, T., Vanhuysse, S., Mboga, N. O., Andreo, V., Snow, R. W. B. R., & Lennert, M. (2020). Modelling and mapping the intra-urban spatial distribution of Plasmodium falciparum parasite rate using very-high-resolution satellite derived indicators. International Journal of Health Geographics, 19(1), 38. doi:10.1186/s12942-020-00232-2
  21. 17. Kuffer, M. M., Thomson, D., Boo, G., Mahabir, R., Grippa, T., Vanhuysse, S., Engstrom, R., Ndugwa, R., Makau, J., Darin, E., de Albuquerque, J. P., & Kabaria, C. C. (2020). The role of earth observation in an integrated deprived area mapping "system" for low-to-middle income countries. Remote Sensing, 12(6), 982. doi:10.3390/rs12060982

  22. << Previous 1 2 3 4 5 Next >>